Tulalip Business Park Sewage System Proposal

Daryl B. Williams
Michael Ollivant, P.E.
Doug Berschauer, P.E

History of Project

- Negotiations with City of Marysville for Handling Business Park Sewage
- Identify Other Options for Sewage
 - Upgrade Existing Facility
 - Build New Treatment Facility Using the Same Oxidation Ditch Style System
 - Build New Treatment Facility Using New Membrane Biological Reactive System

Project Goals

- Provide Wastewater Treatment for Business Park by September 2002
- Create Wastewater Re-Use System

Description

- Wastewater Facility Capable of Initially Handling 500,000 gpd Upgradeable to 4 mgd Sewage
- Treated Wastewater Re-Use System?
 - Irrigation (Landscaping/Nursery)?
 - Fire Flows?
 - Fisheries Enhancement?
 - Fountain/Pond?
 - Toilets?
 - Other Ideas?

Sources of Wastewater

- Casino
- Convention Center
- Hotel
- Recreational Facilities
- Retail
- RV Park
- Initial flow < 500,000 gpd</p>

Treatment Alternatives

- Marine Drive
 - Marine Outfall & Conventional Technology
- Tulalip Bay WWTP
 - Marine Outfall & MBR Technology
- Business Park
 - Reuse of Effluent with MBR Technology

MBR System

- Uses Biological Process similar to Existing Treatment Plant
- Replaces Secondary Clarifier with
 Membrane Filtration in the Bioreactor
- Uses Higher Concentration of Mixed-Liquor Suspended Solids (MLSS) 15,000 – 20,000 mg/l

Kubota Submerged Membrane Unit

8/15/01

Kubota

11

Specifications of Submerged Membrane Unit

Type		Number of membrane cartridges	Type of membrane cartridge	Effective filtration area	Max. dimensions (W×D×H mm)	Weight of water contained (kg)
Type A	A50	50	Type 510	40	1100×880×2550	700
	A75	75		60	1450×880×2550	900
	A100	100		80	1800×880×2550	1150
	A125	125		100	2150×880×2550	1400
	A150	150		120	2500×880×2550	1600
Type E	E50	50	Type 510	40	1100×880×2040	650
	E75	75		60	1450×880×2040	850
	E100	100		80	1800×880×2040	1100
	E125	125		100	2150×880×2040	1350
	E150	150		120	2500×880×2040	1550
Type F	F50	50	Type 510	40	1100×880×1530	600

Screening & Grit Removal

- Removal of Large Inorganic Debris
- Grit Removal System for Removal of Sand
- Kubota Recommends Dual Screening System to Prevent Debris from Damaging Membranes
 - 6 mm Primary Screens
 - 2 or 3 mm Secondary Screens

Disinfection Systems

- Chlorination System
 - Re-Use System
 - Irrigation (Landscaping/Nursery)?
 - Fire Flows?
 - Fountain/Pond?
 - Street Cleaning?
 - Toilets?
 - Other?
 - Potential human contact

Disinfection Systems

- Ultra-Violet (UV) System
 - Fisheries Enhancement?
 - Rearing Pond(s)?
 - Stream Flow Augmentation?
 - Wetland Discharge?
 - Groundwater Injection?

STANDBY BLOWER 5 TO TANK 6 VALVE AV2804 OPENED CLOSED

AVAILABLE

LAMP O

MEMBRANE AERATION

TANK No.5

FLOW FIT2204

SCREEN DIFFERENTIAL LEVEL LOTTEROR MEM

MEMBRANE AFRANCH TANK NOS

LEVEL 112406

FLOW FIT2205

SLIDGE RECYCLE TANK LEVEL LITEMOS SLIDGE HOLDING S

0 - 50 Hs

PERMEATE TANK

DELIVERY PRESSURE PROSPECT FARM SLUDGE MAIN PICZ300 PERMEATE TANK DISSOLVED DAYGEN DICAZBOO SLAUGE BUICTION MAN SLIEGE DENBITY OF AUBO PERMEATE TANK TURBIOTTY OICA2802

Discharge Options

- Deep Water Discharge (Requires \$6,000,000 Pipeline)
- Artificial Wetlands –
 (Diffused inflow through sand filter)
 (Coho or Sturgeon Creeks)
- Groundwater Injection (Rapid Infiltration)
- Re-Use Systems

Environmental Enhancement Locations

UIC Wetland Augmentation Area

Secondary UIC Area

Sands of Quil Ceda

Process for Selection

- Consultant Recommendations (June 5)
- Staff Review (June 6 July 13)
- Utilities Authority Review (July 10)
- Planning Commission Review (July 11)
- General Council Review (July 14)
- Retreat (July 16 & 17)(Board, Staff, Consultants)
- Initiate EPA Consultation (Aug. 16)

Comparison of Effluent Loadings

Primary Treatment

- BOD
- TSS
- Total Nitrogen
- Fecal

580 - 835 lbs/day

210-375 lbs/day

105 - 250 lbs/day

10³ - 10⁶ / 100ml

Comparison of Effluent Loadings

Secondary Treatment

- BOD
- TSS
- Total Nitrogen
- Fecal

125 lbs/day

125 lbs/day

85 - 210 lbs/day

400 / 100ml

Comparison of Effluent Loadings

MBR with Denitrification

BOD

TSS

Total Nitrogen

Fecal

17 lbs/day

4 lbs/day

13 - 21 lbs/day

20 / 100ml

Comparison of Equivalent Loads

MBR with Denitrification

BOD

TSS

Total Nitrogen

40 homes

25 homes

170 homes

Conclusions

- MBR Process Applicable for:
 - Wetland Discharge (with aeration)
 - Fisheries Enhancement (with aeration)
 - Groundwater Discharge
 - Re-Use Systems
 - Regional Approach to groundwater usage

Conclusions

- Regional Issues:
 - Surface water usage
 - Failing septic tanks
 - Satellite system potential